Reduced release of nitric oxide to shear stress in mesenteric arteries of aged rats.
نویسندگان
چکیده
We hypothesized that aging is characterized by a reduced release of nitric oxide (NO) in response to shear stress in resistance vessels. Mesenteric arterioles and arteries of young (6 mo) and aged (24 mo) male Fischer 344 rats were isolated and cannulated. Shear stress (15 dyn/cm(2))-induced dilation was significantly reduced and shear stress (1, 5, 10, and 15 dyn/cm(2))-induced increases in perfusate nitrite were significantly smaller at all shear stress levels in vessels of aged rats. Inhibition of NO synthesis abolished shear stress-induced release of nitrite. Furthermore, shear stress (15 dyn/cm(2))-induced release of nitrate was significantly higher and total nitrite (nitrite plus nitrate) was significantly lower in vessels of aged rats. Tiron or SOD significantly increased nitrite released from vessels of aged rats, but this was still significantly less than that in young rats. Superoxide production was increased and the activity of SOD was decreased in vessels of aged rats. There were no differences in endothelial NO synthase (eNOS) protein and basal activity or in Cu/Zn-SOD and Mn-SOD proteins in vessels of the two groups, but extracellular SOD was significantly reduced in vessels of aged rats. Maximal release of NO induced by shear stress plus ACh (10(-5) M) was comparable in the two groups, but phospho-eNOS in response to shear stress (15 dyn/cm(2)) was significantly reduced in vessels of aged rats. These data suggest that an increased production of superoxide, a reduced activity of SOD, and an impaired shear stress-induced activation of eNOS are the causes of the decreased shear stress-induced release of NO in vessels of aged rats.
منابع مشابه
Chronic high blood flow potentiates shear stress-induced release of NO in arteries of aged rats.
Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order m...
متن کاملeNOS uncoupling and endothelial dysfunction in aged vessels.
Endothelial nitric oxide synthase (eNOS) uncoupling is a mechanism that leads to endothelial dysfunction. Previously, we reported that shear stress-induced release of nitric oxide in vessels of aged rats was significantly reduced and was accompanied by increased production of superoxide (18, 27). In the present study, we investigated the influence of aging on eNOS uncoupling. Mesenteric arterie...
متن کاملAge-associated endothelial dysfunction in rat mesenteric arteries: roles of calcium-activated K(+) channels (K(ca)).
Age-associated changes in large blood vessels were characterized by increased arterial wall thickness, luminal dilation and impaired endothelial function. But little is known about the effect of age on structural and functional changes in small resistance arteries. The mechanisms underlying age-associated endothelial dysfunction in rat mesenteric resistance arteries were investigated in the pre...
متن کاملEffect of advanced maternal age on pregnancy outcomes and vascular function in the rat.
Advanced maternal age is becoming increasingly common in Western societies and is associated with increased maternal and fetal morbidity and mortality. We hypothesized that aging results in impaired vascular function in pregnancy because of increased vascular oxidative stress and resultant scavenging of nitric oxide in both uterine and systemic arteries, causing reduced uteroplacental perfusion...
متن کاملAge-related alterations in NOS and oxidative stress in mesenteric arteries from male and female rats.
Epidemiological evidence suggests that advancing age affects the cardiovascular system of men and women differently. The purpose of this study was to determine whether the effects of aging on nitric oxide synthase (NOS), oxidative stress, and vascular function are different in males and females. Mesenteric arteries from young (3 mo) and old (24 mo) male and female Fischer 344/Brown Norway rats ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 286 6 شماره
صفحات -
تاریخ انتشار 2004